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Abstract
Objective  Systematic literature reviews (SLRs) are critical for life-science research. However, the manual selection 
and retrieval of relevant publications can be a time-consuming process. This study aims to (1) develop two 
disease-specific annotated corpora, one for human papillomavirus (HPV) associated diseases and the other for 
pneumococcal-associated pediatric diseases (PAPD), and (2) optimize machine- and deep-learning models to 
facilitate automation of the SLR abstract screening.

Methods  This study constructed two disease-specific SLR screening corpora for HPV and PAPD, which contained 
citation metadata and corresponding abstracts. Performance was evaluated using precision, recall, accuracy, and 
F1-score of multiple combinations of machine- and deep-learning algorithms and features such as keywords and 
MeSH terms.

Results and conclusions  The HPV corpus contained 1697 entries, with 538 relevant and 1159 irrelevant articles. 
The PAPD corpus included 2865 entries, with 711 relevant and 2154 irrelevant articles. Adding additional features 
beyond title and abstract improved the performance (measured in Accuracy) of machine learning models by 3% 
for HPV corpus and 2% for PAPD corpus. Transformer-based deep learning models that consistently outperformed 
conventional machine learning algorithms, highlighting the strength of domain-specific pre-trained language models 
for SLR abstract screening. This study provides a foundation for the development of more intelligent SLR systems.
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Introduction
Systematic literature reviews (SLRs) are an essential tool 
in many areas of health sciences, enabling researchers to 
understand the current knowledge around a topic and 
identify future research and development directions. 
In the field of health economics and outcomes research 
(HEOR), SLRs play a crucial role in synthesizing evidence 
around unmet medical needs, comparing treatment 
options, and preparing the design and execution of future 
real-world evidence studies. SLRs provide a comprehen-
sive and transparent analysis of available evidence, allow-
ing researchers to make informed decisions and improve 
patient outcomes.

Conducting a SLR involves synthesizing high-quality 
evidence from biomedical literature in a transparent 
and reproducible manner, and seeks to include all avail-
able evidence on a given research question, and provides 
some assessment regarding quality of the evidence [1, 2]. 
To conduct an SLR one or more bibliographic databases 
are queried based on a given research question and a cor-
responding set of inclusion and exclusion criteria, result-
ing in the selection of a relevant set of abstracts. The 
abstracts are reviewed, further refining the set of articles 
that are used to address the research question. Finally, 
appropriate data is systematically extracted from the arti-
cles and summarized [1, 3]. 

The current approach to conducting a SLR is through 
manual review, with data collection, and summary done 
by domain experts against pre-specified eligibility crite-
ria. This is time-consuming, labor-intensive, expensive, 
and non-scalable given the current more-than linear 
growth of the biomedical literature [4]. Michelson and 
Reuter estimate that each SLR costs approximately 
$141,194.80 and that on average major pharmaceuti-
cal companies conduct 23.36 SLRs, and major academic 
centers 177.32 SLRs per year, though the cost may vary 
based on the scope of different reviews [4]. Clearly auto-
mated methods are needed, both from a cost/time sav-
ings perspective, and for the ability to effectively scan and 
identify increasing amounts of literature, thereby allow-
ing the domain experts to spend more time analyzing the 
data and gleaning the insights.

One major task of SLR project that involves large 
amounts of manual effort, is the abstract screening task. 
For this task, selection criteria are developed and the 
citation metadata and abstract for articles tentatively 
meeting these criteria are retrieved from one or more 
bibliographic databases (e.g., PubMed). The abstracts 
are then examined in more detail to determine if they 
are relevant to the research question(s) and should be 
included or excluded from further consideration. Conse-
quently, the task of determining whether articles are rel-
evant or not based on their titles, abstracts and metadata 
can be treated as a binary classification task, which can 

be addressed by natural language processing (NLP). NLP 
involves recognizing entities and relationships expressed 
in text and leverages machine-learning (ML) and deep-
learning (DL) algorithms together with computational 
semantics to extract information. The past decade has 
witnessed significant advances in these areas for biomed-
ical literature mining. A comprehensive review on how 
NLP techniques in particular are being applied for auto-
matic mining and knowledge extraction from biomedical 
literature can be found in Zhao et al. [5].

Materials and methods
The aims of this study were to: (1) identify and develop 
two disease-specific corpora, one for human papillomavi-
rus (HPV) associated diseases and the other for pneumo-
coccal-associated pediatric diseases suitable for training 
the ML and DL models underlying the necessary NLP 
functions; (2) investigate and optimize the performance 
of the ML and DL models using different sets of fea-
tures (e.g., keywords, Medical Subject Heading (MeSH) 
terms [6]) to facilitate automation of the abstract screen-
ing tasks necessary to construct a SLR. Note that these 
screening corpora can be used as training data to build 
different NLP models. We intend to freely share these 
two corpora with the entire scientific community so they 
can serve as benchmark corpora for future NLP model 
development in this area.

SLR corpora preparation
Two completed disease-specific SLR studies by Merck 
& Co., Inc., Rahway, NJ, USA were used as the basis to 
construct corpora for abstract-level screening. The two 
SLR studies were both relevant to health economics and 
outcome research, including one for human papilloma-
virus (HPV) associated diseases (referred to as the HPV 
corpus), and one for pneumococcal-associated pediatric 
diseases (which we refer to as the PAPD corpus). Both 
of the original SLR studies contained literature from 
PubMed/MEDLINE and EMBASE. Since we intended 
for the screening corpora to be released to the commu-
nity, we only kept citations found from PubMed/MED-
LINE in the finalized corpora. Because the original SLR 
studies did not contain the PubMed ID (PMID) for each 
article, we matched each article’s citation information (if 
available) against PubMed and then collected meta-data 
such as authors, journals, keywords, MeSH terms, pub-
lication types, etc., using PubMed Entrez Programming 
Utilities (E-utilities) Application Programming Interface 
(API). The detailed description of the two corpora can be 
seen in Table 1. Both of the resulting corpora are publicly 
available at [https://github.com/Merck/NLP-SLR-cor-
pora ].

https://github.com/Merck/NLP-SLR-corpora
https://github.com/Merck/NLP-SLR-corpora
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Machine learning algorithms
Although deep learning algorithms have demonstrated 
superior performance on many NLP tasks, conventional 
machine learning algorithms have certain advantages, 
such as low computation costs and faster training and 
prediction speed.

We evaluated four traditional ML-based document 
classification algorithms, XGBoost [7], Support Vector 

Machines (SVM) [8], Logistic regression (LR) [9], and 
Random Forest [10] on the binary inclusion/exclusion 
classification task for abstract screening. Salient charac-
teristics of these models are as follows:

1.	 XGBoost: Short for “eXtreme Gradient Boosting”, 
XGBoost is a boosting-based ensemble of algorithms 
that turn weak learners into strong learners by 

Table 1  Descriptions of SLR abstract-level screening corpora
HPV corpus PAPD corpus

Study aim To identify the available peer-reviewed evidence on the 
prevalence of HPV detected in head and neck squamous 
cell carcinomas (HNSCCs)

To gain an understanding of the burden of Pneumococcal 
Disease for pediatric patients (humanistic, economic, and epide-
miological) through the development of a systematic literature 
review

Study period 2012 to 2020 2016 to 2021
Inclusion criteria ● adults (age > = 13) with histologically confirmed 

invasive HNSCCs (oral cavity, oropharynx, larynx, 
hypopharynx)
● report type-specific HPV DNA prevalence (2012–2014) 
or any HPV DNA prevalence (2015–2020)

● Pediatric patients (0–18 years old) with pneumococcal disease
● Clinical manifestations of Pneumococcal Disease including:
o Pneumonia (including community acquired, hospital acquired 
and ventilator acquired pneumonia, and non-bacteremic pneu-
mococcal pneumonia [NBPP])
o Meningitis (including post-meningitis sequalae)
o Acute otitis media
o Bacteremia (sepsis, septicemia)
o Empyema
• High risk population subgroups, including:
o Cancer
o Immunocompromised
o HIV
o Renal disease
o Asplenia
o Diabetes
o Heart conditions
o Lung conditions
o Sickle cell disease
o Cochlear implants
o Cerebrospinal fluid leaks

Exclusion criteria ● Children (age < 13 years) years only
● HPV-infected subjects only
● Immunocompromised populations only (e.g., 
HIV-infected)
● Specific high-risk populations only (e.g., smokers, 
people who abuse alcohol)
● Patients with specific, not targeted diseases or under-
going specific treatments only
● Other special populations (e.g., prison inmates, im-
migrants, ethnic minority populations only)
● Language not English
● Conference proceedings
● No abstract
● Narrative review (however, highly relevant reviews 
were included to be perused in full text for primary 
references)
● Small study (N < 25)
● Clinical guideline

● Mixed pediatric/adult populations without segregated results

Corpus 
statistics

Total 
citations

1697 2865

Included 
citations

538 711

Excluded 
citations

1159 2154
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focusing on where the individual models went 
wrong. In Gradient Boosting, individual weak models 
train upon the difference between the prediction 
and the actual results [7]. We set max_depth at 3, 
n_estimators at 150 and learning rate at 0.7.

2.	 Support vector machine (SVM): SVM is one of the 
most robust prediction methods based on statistical 
learning frameworks. It aims to find a hyperplane in 
an N-dimensional space (where N = the number of 
features) that distinctly classifies the data points [8]. 
We set C at 100, gamma at 0.005 and kernel as radial 
basis function.

3.	 Logistic regression (LR): LR is a classic statistical 
model that in its basic form uses a logistic function 
to model a binary dependent variable [9]. We set C at 
5 and penalty as l2.

4.	 Random forest (RF): RF is a machine learning 
technique that utilizes ensemble learning to combine 
many decision trees classifiers through bagging or 
bootstrap aggregating [10]. We set n_estimators at 
100 and max_depth at 14.

These four algorithms were trained for both the HPV 
screening task and the PAPD screening task using the 
corresponding training corpus.

For each of the four algorithms, we examined perfor-
mance using (1) only the baseline feature criteria (title 
and abstract of each article), and (2) with five additional 
meta-data features (MeSH, Authors, Keywords, Journal, 
Publication types.) retrieved from each article using the 
PubMed E-utilities API. Conventionally, title and abstract 
are the first information a human reviewer would depend 
on when making a judgment for inclusion or exclusion of 
an article. Consequently, we used title and abstract as the 
baseline features to classify whether an abstract should 
be included at the abstract screening stage. We further 
evaluated the performance with additional features that 
can be retrieved by PubMed E-utilities API, including 
MeSH terms, authors, journal, keywords and publication 
type. For baseline evaluation, we concatenated the titles 
and abstracts and extracted the TF-IDF (term frequency-
inverse document frequency) vector for the corpus. TF-
IDF evaluates how relevant a word is to a document in 
a collection of documents. For additional features, we 
extracted TF-IDF vector using each feature respectively 
and then concatenated the extracted vectors with title 
and abstract vector. XGBoost was selected for the feature 
evaluation process, due to its relatively quick computa-
tional running time and robust performance.

Deep learning algorithms
Conventional ML methods rely heavily on manually 
designed features and suffer from the challenges of data 
sparsity and poor transportability when applied to new 

use cases. Deep learning (DL) is a set of machine learn-
ing algorithms based on deep neural networks that has 
advanced performance of text classification along with 
many other NLP tasks. Transformer-based deep learning 
models, such as BERT (Bidirectional encoder represen-
tations from transformers), have achieved state-of-the-
art performance in many NLP tasks [11]. A Transformer 
is an emerging architecture of deep learning models 
designed to handle sequential input data such as natural 
language by adopting the mechanisms of attention to dif-
ferentially weigh the significance of each part of the input 
data [12]. The BERT model and its variants (which use 
Transformer as a basic unit) leverage the power of trans-
fer learning by first pre-training the models over 100’s of 
millions of parameters using large volumes of unlabeled 
textual data. The resulting model is then fine-tuned for 
a particular downstream NLP application, such as text 
classification, named entity recognition, relation extrac-
tion, etc. The following three BERT models were evalu-
ated against both the HPV and Pediatric pneumococcal 
corpus using two sets of features (title and abstract versus 
adding all additional features into the text). For all BERT 
models, we used Adam optimizer with weight decay. We 
set learning rate at 1e-5, batch size at 8 and number of 
epochs at 20.

1.	 BERT base: this is the original BERT model released 
by Google. The BERT base model was pre-trained on 
textual data in the general domain, i.e., BooksCorpus 
(800 M words) and English Wikipedia (2500 M 
words) [11]. 

2.	 BioBERT base: as the biomedical language is different 
from general language, the BERT models trained on 
general textual data may not work well on biomedical 
NLP tasks. BioBERT was further pre-trained 
(based on original BERT models) in the large-scale 
biomedical corpora, including PubMed abstracts 
(4.5B words) and PubMed Central Full-text articles 
(13.5B words) [13]. 

3.	 PubMedBERT: PubMedBERT was pre-trained from 
scratch using abstracts from PubMed. This model 
has achieved state-of-the-art performance on several 
biomedical NLP tasks on Biomedical Language 
Understanding and Reasoning Benchmark [14]. 

Text pre-processing and libraries that were used
We have removed special characters and common Eng-
lish words as a part of text pre-processing. Default 
tokenizer from scikit-learn was adopted for tokenization. 
Scikit-learn was also used for TF-IDF feature extraction 
and machine learning algorithms implementation. Trans-
formers libraries from Hugging Face were used for deep 
learning algorithms implementation.
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Evaluation
Evaluation datasets were constructed from the HPV and 
Pediatric pneumococcal corpora and were split into train-
ing, validation and testing sets with a ratio of 8:1:1 for 
the two evaluation tasks: (1) ML algorithms performance 
assessment; and (2) DL algorithms performance assess-
ment. Models were fitted on the training sets, and model 
hyperparameters were optimized on the validation sets 
and the performance were evaluated on the testing sets. 
The following major metrics are expressed by the noted 
calculations:

	
Precision =

Truepositive

Truepositive+ Falsepositive

	
Recall =

Truepositive

Truepositive + Falsenegative

	
F1score =

2× Precision×Recall

Precision+ Recall

	

Accuracy =

Truepositive + Truenegative

Truepositive + Truenegative+ Falsepositive+ Falsenegative

Where True positive is an outcome where the model 
correctly predicts the positive (e.g., “included” in our 
tasks) class. Similarly, a True negative is an outcome 
where the model correctly predicts the negative class 
(e.g., “excluded” in our tasks). False positive is an out-
come where the model incorrectly predicts the positive 
class, and a False negative is an outcome where the model 
incorrectly predicts the negative class. We have repeated 
all experiments five times and reported the mean scores 
with standard deviation.

Results
Table  2 shows the baseline comparison using different 
feature combinations for the SLR text classification tasks 
using XGBoost. As noted, adding additional features 
in addition to title and abstract was effective in further 
improving the classification accuracy. Specifically, using 
all available features for the HPV classification increased 
accuracy by ?∼ 3% and F1 score by ?∼ 3%; using all avail-
able features for Pediatric pneumococcal classification 
increased accuracy by ?∼ 2% and F1 score by ?∼ 4%. As 
observed, adding additional features provided a stronger 
boost in precision, which contributed to the overall per-
formance improvement.

The comparison of the article inclusion/exclusion classi-
fication task for four machine learning algorithms with all 
features is shown in Table 3. XGBoost achieved the high-
est accuracy and F-1 scores in both tasks. Table 4 shows 
the comparison between XGBoost and deep learning 

Table 2  The features evaluation results using XGBoost as the classification algorithm. Bold indicates the best score
Task Features F1 score Precision Recall Accuracy
HPV Title + abstract 0.77(0.02) 0.69(0.02) 0.87(0.04) 0.83(0.01)

Title + abstract + authors 0.77(0.02) 0.69(0.02) 0.87(0.04) 0.84(0.02)
Title + abstract + keywords 0.77(0.01) 0.69(0.01) 0.88(0.02) 0.84(0.01)
Title + abstract + journal 0.77(0.02) 0.69(0.02) 0.87(0.04) 0.83(0.01)
Title + abstract + publication types 0.77(0.01) 0.69(0.02) 0.86(0.02) 0.84(0.01)
Title + abstract + MeSH 0.80(0.02) 0.72(0.03) 0.89(0.03) 0.86(0.02)
Title + abstract + authors + keywords + journal + MeSH + publication types 0.80(0.02) 0.72(0.02) 0.90(0.03) 0.86(0.01)

PADA Title + abstract 0.74(0.02) 0.70(0.02) 0.79(0.04) 0.86(0.01)
Title + abstract + authors 0.74(0.02) 0.70(0.02) 0.79(0.04) 0.86(0.01)
Title + abstract + keywords 0.75(0.01) 0.71(0.01) 0.80(0.03) 0.87(0.01)
Title + abstract + journal 0.74(0.02) 0.70(0.02) 0.79(0.04) 0.86(0.01)
Title + abstract + publication types 0.74(0.02) 0.70(0.02) 0.79(0.04) 0.86(0.01)
Title + abstract + MeSH 0.77(0.01) 0.74(0.01) 0.81(0.02) 0.88(0.00)
Title + abstract + authors + keywords + journal + MeSH + publication types 0.78(0.01) 0.74(0.01) 0.81(0.02) 0.88(0.00)

Table 3  The comparison among conventional machine learning 
algorithms using all features combination. Bold indicates the 
best score
Task Algorithm F1 score Precision Recall Accuracy
HPV XGBoost 0.80(0.02) 0.72(0.02) 0.90(0.03) 0.86(0.01)

Support 
vector 
machine

0.71(0.01) 0.75(0.01) 0.67(0.02) 0.82(0.01)

Logistics 
regression

0.74(0.01) 0.70(0.01) 0.78(0.02) 0.83(0.01)

Random 
forest

0.75(0.03) 0.74(0.04) 0.76(0.03) 0.84(0.02)

PADA XGBoost 0.78(0.01) 0.74(0.01) 0.81(0.02) 0.88(0.00)
Support 
vector 
machine

0.74(0.01) 0.69(0.02) 0.80(0.02) 0.86(0.01)

Logistics 
regression

0.73(0.00) 0.69(0.01) 0.78(0.02) 0.86(0.00)

Random 
forest

0.69(0.01) 0.70(0.01) 0.69(0.03) 0.85(0.00)
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algorithms on the classification tasks for each disease. 
Both XGBoost and deep learning models consistently have 
achieved higher accuracy scores when using all features 
as input. Among all models, BioBERT has achieved the 
highest accuracy at 0.88, compared with XGBoost at 0.86. 
XGBoost has the highest F1 score at 0.8 and the highest 
recall score at 0.9 for inclusion prediction.

Discussions and conclusions
Abstract screening is a crucial step in conducting a sys-
tematic literature review (SLR), as it helps to identify rel-
evant citations and reduces the effort required for full-text 
screening and data element extraction. However, screen-
ing thousands of abstracts can be a time-consuming and 

burdensome task for scientific reviewers. In this study, 
we systematically investigated the use of various machine 
learning and deep learning algorithms, using different sets 
of features, to automate abstract screening tasks. We eval-
uated these algorithms using disease-focused SLR corpora, 
including one for human papillomavirus (HPV) associ-
ated diseases and another for pneumococcal-associated 
pediatric diseases (PADA). The publicly available corpora 
used in this study can be used by the scientific community 
for advanced algorithm development and evaluation. Our 
findings suggest that machine learning and deep learning 
algorithms can effectively automate abstract screening 
tasks, saving valuable time and effort in the SLR process.

Although machine learning and deep learning algo-
rithms trained on the two SLR corpora showed some 
variations in performance, there were also some consis-
tencies. Firstly, adding additional citation features signifi-
cantly improved the performance of conventional machine 
learning algorithms, although the improvement was not as 
strong in transformer-based deep learning models. This 
may be because transformer models were mostly pre-
trained on abstracts, which do not include additional cita-
tion information like MeSH terms, keywords, and journal 
names. Secondly, when using only title and abstract as 
input, transformer models consistently outperformed con-
ventional machine learning algorithms, highlighting the 
strength of subject domain-specific pre-trained language 
models. When all citation features were combined as 
input, conventional machine learning algorithms showed 
comparable performance to deep learning models. Given 
the much lower computation costs and faster training and 
prediction time, XGBoost or support vector machines 
with all citation features could be an excellent choice for 
developing an abstract screening system.

Some limitations remain for this study. Although we’ve 
evaluated cutting-edge machine learning and deep learning 
algorithms on two SLR corpora, we did not conduct much 
task-specific customization to the learning algorithms, 
including task-specific feature engineering and rule-based 
post-processing, which could offer additional benefits to 
the performance. As the focus of this study is to provide 
generalizable strategies for employing machine learning to 
abstract screening tasks, we leave the task-specific custom-
ization to future improvement. The corpora we evaluated 
in this study mainly focus on health economics and out-
come research, the generalizability of learning algorithms 
to another domain will benefit from formal examination.

Extensive studies have shown the superiority of trans-
former-based deep learning models for many NLP tasks 
[11, 13–16]. Based on our experiments, however, adding 
features to the pre-trained language models that have not 
seen these features before may not significantly boost their 
performance. It would be interesting to find a better way of 
encoding additional features to these pre-trained language 

Table 4  The comparison of machine learning and deep learning 
algorithms. Bold indicates the best score
Task Algorithm F1 score Precision Recall Accuracy
HPV XGBoost 

– title and 
abstract

0.77(0.02) 0.69(0.02) 0.87(0.04) 0.83(0.01)

XGBoost – all 
features

0.80(0.02) 0.72(0.02) 0.90(0.03) 0.86(0.01)

PubMedBERT 
– title and 
abstract

0.75(0.03) 0.72(0.11) 0.81(0.10) 0.83(0.05)

PubMedBERT 
– all features

0.76(0.02) 0.77(0.02) 0.74(0.03) 0.87(0.01)

BioBERT 
– title and 
abstract

0.74(0.01) 0.68(0.02) 0.81(0.05) 0.82(0.01)

BioBERT – all 
features

0.76(0.03) 0.86(0.04) 0.68(0.03) 0.88(0.01)

BERT base 
– title and 
abstract

0.68(0.03) 0.57(0.05) 0.86(0.04) 0.74(0.05)

BERT base – 
all features

0.66(0.03) 0.62(0.12) 0.75(0.11) 0.78(0.06)

PADA XGBoost 
– title and 
abstract

0.74(0.02) 0.70(0.02) 0.79(0.04) 0.86(0.01)

XGBoost – all 
features

0.78(0.01) 0.74(0.01) 0.81(0.02) 0.88(0.00)

PubMedBERT 
– title and 
abstract

0.79(0.02) 0.75(0.04) 0.85(0.02) 0.89(0.01)

PubMedBERT 
– all features

0.80(0.01) 0.79(0.03) 0.80(0.01) 0.90(0.01)

BioBERT 
– title and 
abstract

0.79(0.01) 0.74(0.03) 0.84(0.03) 0.89(0.01)

BioBERT – all 
features

0.79(0.01) 0.76(0.02) 0.82(0.02) 0.89(0.01)

BERT base 
– title and 
abstract

0.71(0.02) 0.62(0.03) 0.83 (0.01) 0.83(0.02)

BERT base – 
all features

0.71(0.04) 0.65(0.06) 0.80 (0.03) 0.84(0.03)
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models to maximize their performance. In addition, trans-
fer learning has proven to be an effective technique to 
improve the performance on a target task by leveraging 
annotation data from a source task [17–19]. Thus, for a 
new SLR abstract screening task, it would be worthwhile 
to investigate the use of transfer learning by adapting our 
(publicly available) corpora to the new target task.

When labeled data is available, supervised machine 
learning algorithms can be very effective and efficient for 
article screening. However, as there is increasing need for 
explainability and transparency in NLP-assisted SLR work-
flow, supervised machine learning algorithms are facing 
challenges in explaining why certain papers fail to fulfill 
the criteria. The recent advances in large language mod-
els (LLMs), such as ChatGPT [20] and Gemini [21], show 
remarkable performance on NLP tasks and good potentials 
in explainablity. Although there are some concerns on the 
bias and hallucinations that LLMs could bring, it would be 
worthwhile to evaluate further how LLMs could be applied 
to SLR tasks and understand the performance of using 
LLMs to take free-text article screening criteria as the input 
and provide explainanation for article screening decisions.
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